
Part V:MC-based likelihood inference for
discretely-observed reducible diffusions

I Collapse of basic DA when estimating volatility

I A toy example illustration

I Reducible diffusions

I Path transformations and efficient DA

To avoid excessive notation we focus on time-homogeneous
diffusions



Framework

The problem can be appreciated even at the simplest case of
unknown diffusion coefficient:

dVt = b(Vt ; θ)dt + σdBt (55)

with θ and σ unknown.

Replicating the previous approach we immediately run into a
serious problem: existence of parameter-free dominating measure
for DA: (42)



Therefore, we cannot design a DA which operates on path spaces.
So what would happen if we tried the previous DA scheme on a
discretization of the model?



A toy example

Let Vt be a Brownian motion with infinitesimal variance σ2.
Assume that V0 = 0. Suppose that V1 = y is observed.

V1 ∼ N(0, σ2)

Thus, given the prior σ−2 ∼ Gamma(1, 1),
the posterior for σ−2 is just

Gamma(3/2, 1 + y 2/2).



Data augmentation for the toy example
Suppose now for illustration, that the full likelihood is unavailable
and data augmentation was necessary. We impute

V1/m,V2/m, . . . ,V(M−1)/M .

We use the Gibbs sampling algorithm which iterates the following
loop:

1. Given σ2 impute a discretised Brownian bridge with
infinitesimal variance σ2 hitting V1 = y at time 1.

2. Given V0,V1/M ,V2/M , . . . ,V(M−1)/M ,V1 draw σ−2 from

Gamma(1 + M/2, 1 + MΣV /2)

where ΣV denote the quadratic variation:

ΣV =
M∑
i=1

(Vi/M − V(i−1)/M)2 .



More on the toy example

The following result shows that for this example the convergence
time of the algorithm is O(M) as M becomes large.

Let τ (M) be the inverse variance process for the algorithm which
imputes M − 1 points. It can be shown that by speeding up τ (M)

by a factor of M/4, τ
(M)
[tM/4] converges weakly as M →∞ to a

Langevin diffusion with stationary distribution given by the
posterior.



Theorem
[Roberts and Stramer, 2001] Let P(M) be the law of τ

(M)
[tM/4]

P(M) ⇒ P(∞)

where P(∞) is the law of the diffusion

dξt = ξt{5/4− ξt(1/2 + X 2
1 /4)dt + dBt} .

The convergence time is thus O(M).
ξ has stationary distribution Gamma(3/2, 1 + X 2

1 /2).



The fact that the algorithm is at least O(M) can be seen from the
generic characterization of the convergence of DA in (40). Taking
h(τ) = τ , we have that

γ ≥ 1−
1+M/2

(1+MΣV /2)2

3/2
1+y2/2

large M
≈ 1− (4 + 2y 2)

1

3M
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Degeneration of the MCMC method for increasing M, but also
recall plot in 128



Efficient DA using reparametrizations

An efficient DA with convergence time O(1) in the amount of
imputation can be implemented.

In fact, it is based on a valid DA which is based on path
imputation (i.e M =∞).

The problem we face here arises in many other contexts, and the
solution we will pursue is an instance of a general methodology,
the so-called non-centred parameterizations, see
[Papaspiliopoulos et al., 2003]



For diffusions, it will be achieved using the tools we’ve already
used: the transformation to unit diffusion coefficient (33), and the
tilting of BB paths (53), together with a general trick for obtaining
laws of transformed processes.

In fact, we will capitalize on the work we’ve already done in
understanding diffusion bridges



Reducible diffusions

In multivariate setting if η : Rd → Rn

dη(V ) = Aη(V )ds +∇η(V )σ(V )dB

so we need η s.t:

∇η(V )Γ(V )(∇η(V ))∗ = I

A sufficient condition when d = m = n, which for example in
[Äıt-Sahalia, 2008] is given as the definition of reducible diffusions,
is to obtain: ∇η(V )σ(V ) = I .



The conditions under which this holds are transparent when σ−1

exists.

It is then easy to see that ∂ηk/∂vj = [σ−1]kj and since
∂2ηk/∂vj∂vl should yield the same result regardless of the order of
differentiation, we get the necessary condition:

∂[σ−1]kj
∂vl

=
∂[σ−1]kl
∂vj

This is also sufficient, since we can define ηk =
∫

[σ−1]kjdvj (any j
can be chosen). This function then solves the desired system. The
conditions and proof when σ is not invertible are more intricate.
[Äıt-Sahalia, 2008] only proves this special case.

For intuition consider an SV model for d = 2 with σ12 = σ21 = 0.



Setup

dVs = b(s,Vs ; θ) ds + σ(Vs ; θ) dBs , s ∈ [0,T ] ; (56)

and assume that V is a reducible diffusion, i.e there exists the
transformation

Vs → Xs := η(Vs ; θ)

such that

dXs = α(s,Xs ; θ)ds + dBs



We wish to infer parameters and missing data on the basis of an
observed skeleton v = {v0, v1, . . . , vn}. (We focus again on
discretely observed diffusions, although all these techniques carry
over to all other partial observation schemes)

Recall the missing data formulation: v,V m,V c

DA collapses here due to the perfect dependence of σ and V m

Let xi (θ) = η(vi ; θ), which depends on θ via σ, and
x(θ) = {x0(θ), . . . , xn(θ)}



Transformations under an equivalent measure

A key idea is that it is enough to decouple the perfect dependence
between missing data and parameters under the dominating
measure (due to equivalence of measures). In particular we can do
it under the proposal measure we have used in constructing the
diffusion bridge.

We show how to write V m = g(Ṽ m, θ) where Ṽ m and θ are
independent under the proposal measure. We also show how to
obtain the joint distribution and density of the (Ṽ m, θ)

The principle behind this approach is that since the measures are
equivalent, they have the same almost sure events, therefore
making σ and Ṽ m independent under the proposal measure, will
have the effect that they are not perfectly dependent under the
target measure. The transformation is ideal under the dominating,
it is just enough to lead to a convergent DA under the target.



The transformation

Recall that a bridge from v to w is built by first transforming to
η(v ; θ) and η(w ; θ) and then proposing a Brownian bridge

This is not enough though since the BB depends deterministically
on the parameters through the endpoints

There is a standard way to avoid this: standarize the bridge

Vt = η−1(Ṽt + (1− t/T )η(v ; θ) + (t/T )η(w ; θ) ; θ)



Note that under the proposal measure for V m, Ṽ m ∼W(T ,0,0). Its
distribution under the diffusion bridge measure is intractable. On
the other hand, it is easy to simulate it under the diffusion bridge
measure...

We now find the joint density of θ and Ṽ m conditionally on
observed data, say π(θ, Ṽ m).



We first derive the conditional density of Ṽ m given θ, v. A simple
trick to find this, is to think of it as an importance sampling
exercise: how should I weight draws Ṽ from the proposal measure
W(T ,0,0) in order to obtain diffusion bridges from v to w?

The answer is actually given in (49). Therefore, the conditional

density of Ṽ m w.r.t a parameter independent Brownian bridge
measure is given by

G0,T (x(θ), y(θ))

p0,T (x(θ), y(θ))

exp

{∫ T

0
α(s,Xs(θ, Ṽ ))∗dBs −

1

2

∫ T

0
[α∗α](s,Xs(θ, Ṽ ))ds

}



On the other hand, note that the marginal posterior, in other
words, the observed data posterior, is (we give it just for two
successive observations at times 0, T )

π(θ | v ,w) ∝ π(θ)p0,T (v ,w ; θ) = π(θ)p0,T (x(θ), y(θ); θ)J(v , θ)

where J is the Jacobian transformation stemming from η.



Therefore,

π(θ, Ṽ m | v ,w) ∝ G0,T (x(θ), y(θ))π(θ)J(v , θ)

exp

{∫ T

0
α(s,Xs(θ, Ṽ ))∗dBs −

1

2

∫ T

0
[α∗α](s,Xs(θ, Ṽ ))ds

}
This is only given for two data points, for n > 2 it will be a
product of such terms due to the Markov property.

From this we easily obtain π(θ | Ṽ m, v ,w) up to proportionality.



The algorithm

Iterate the following steps

1. Simulate V m according to the diffusion bridge (by
independence MH, random walk on paths, etc)

2. Transform V m → Ṽ m

3. Simulate from π(θ | Ṽ m, v ,w) (directly, by MH, etc)



Some results

We apply the methods again to to the so-called double well
potential model:

dVs = −ρ(V 3
s − µVs)ds + σdBs

where we’ve simulated 1000 data with interobservation times 1,
and (ρ, µ, σ) = (0.1, 2, 0.5). This is the same dat as before but all
parameters are treated as unknown.



MCMC summaries M = 5
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MCMC summaries M = 50
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Posterior densities
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